Source code for clustering.dbscan

#!/usr/bin/env python3

"""Module containing the DBSCANClustering class and the command line interface."""
import argparse
import pandas as pd
from biobb_common.generic.biobb_object import BiobbObject
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import DBSCAN
from biobb_common.configuration import settings
from biobb_common.tools import file_utils as fu
from biobb_common.tools.file_utils import launchlogger
from biobb_ml.clustering.common import check_input_path, check_output_path, getHeader, getIndependentVars, getIndependentVarsList, hopkins, plotCluster


[docs]class DBSCANClustering(BiobbObject): """ | biobb_ml DBSCANClustering | Wrapper of the scikit-learn DBSCAN method. | Clusters a given dataset. Visit the `DBSCAN documentation page <https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html>`_ in the sklearn official website for further information. Args: input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/clustering/dataset_dbscan.csv>`_. Accepted formats: csv (edam:format_3752). output_results_path (str): Path to the clustered dataset. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/clustering/ref_output_results_dbscan.csv>`_. Accepted formats: csv (edam:format_3752). output_plot_path (str) (Optional): Path to the clustering plot. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/clustering/ref_output_plot_dbscan.png>`_. Accepted formats: png (edam:format_3603). properties (dic - Python dictionary object containing the tool parameters, not input/output files): * **predictors** (*dict*) - ({}) Features or columns from your dataset you want to use for fitting. You can specify either a list of columns names from your input dataset, a list of columns indexes or a range of columns indexes. Formats: { "columns": ["column1", "column2"] } or { "indexes": [0, 2, 3, 10, 11, 17] } or { "range": [[0, 20], [50, 102]] }. In case of mulitple formats, the first one will be picked. * **eps** (*float*) - (0.5) [0~10|0.1] The maximum distance between two samples for one to be considered as in the neighborhood of the other. * **min_samples** (*int*) - (5) [1~100|1] The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. * **metric** (*str*) - ("euclidean") The metric to use when calculating distance between instances in a feature array. Values: cityblock (Compute the City Block -Manhattan- distance), cosine (Compute the Cosine distance between 1-D arrays), euclidean (Computes the Euclidean distance between two 1-D arrays), l1, l2, manhattan (Compute the Manhattan distance), braycurtis (Compute the Bray-Curtis distance between two 1-D arrays), canberra (Compute the Canberra distance between two 1-D arrays), chebyshev (Compute the Chebyshev distance), correlation (Compute the correlation distance between two 1-D arrays), dice (Compute the Dice dissimilarity between two boolean 1-D arrays), hamming (Compute the Hamming distance between two 1-D arrays), jaccard (Compute the Jaccard-Needham dissimilarity between two boolean 1-D arrays), kulsinski (Compute the Kulsinski dissimilarity between two boolean 1-D arrays), mahalanobis (Compute the Mahalanobis distance between two 1-D arrays), minkowski (Compute the Minkowski distance between two 1-D arrays), rogerstanimoto (Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays), russellrao (Compute the Russell-Rao dissimilarity between two boolean 1-D arrays), seuclidean (Return the standardized Euclidean distance between two 1-D arrays), sokalmichener (Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays), sokalsneath (Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays), sqeuclidean (Compute the squared Euclidean distance between two 1-D arrays), yule (Compute the Yule dissimilarity between two boolean 1-D arrays). * **plots** (*list*) - (None) List of dictionaries with all plots you want to generate. Only 2D or 3D plots accepted. Format: [ { 'title': 'Plot 1', 'features': ['feat1', 'feat2'] } ]. * **scale** (*bool*) - (False) Whether or not to scale the input dataset. * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. Examples: This is a use example of how to use the building block from Python:: from biobb_ml.clustering.dbscan import dbscan prop = { 'predictors': { 'columns': [ 'column1', 'column2', 'column3' ] }, 'eps': 1.4, 'min_samples': 3, 'metric': 'euclidean', 'plots': [ { 'title': 'Plot 1', 'features': ['feat1', 'feat2'] } ] } dbscan(input_dataset_path='/path/to/myDataset.csv', output_results_path='/path/to/newTable.csv', output_plot_path='/path/to/newPlot.png', properties=prop) Info: * wrapped_software: * name: scikit-learn DBSCAN * version: >=0.24.2 * license: BSD 3-Clause * ontology: * name: EDAM * schema: http://edamontology.org/EDAM.owl """ def __init__(self, input_dataset_path, output_results_path, output_plot_path=None, properties=None, **kwargs) -> None: properties = properties or {} # Call parent class constructor super().__init__(properties) self.locals_var_dict = locals().copy() # Input/Output files self.io_dict = { "in": {"input_dataset_path": input_dataset_path}, "out": {"output_results_path": output_results_path, "output_plot_path": output_plot_path} } # Properties specific for BB self.predictors = properties.get('predictors', {}) self.eps = properties.get('eps', .5) self.min_samples = properties.get('min_samples', 5) self.metric = properties.get('metric', 'euclidean') self.plots = properties.get('plots', []) self.scale = properties.get('scale', False) self.properties = properties # Check the properties self.check_properties(properties) self.check_arguments()
[docs] def check_data_params(self, out_log, err_log): """ Checks all the input/output paths and parameters """ self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", out_log, self.__class__.__name__) self.io_dict["out"]["output_results_path"] = check_output_path(self.io_dict["out"]["output_results_path"], "output_results_path", False, out_log, self.__class__.__name__) if self.io_dict["out"]["output_plot_path"]: self.io_dict["out"]["output_plot_path"] = check_output_path(self.io_dict["out"]["output_plot_path"], "output_plot_path", True, out_log, self.__class__.__name__)
[docs] @launchlogger def launch(self) -> int: """Execute the :class:`DBSCANClustering <clustering.dbscan.DBSCANClustering>` clustering.dbscan.DBSCANClustering object.""" # check input/output paths and parameters self.check_data_params(self.out_log, self.err_log) # Setup Biobb if self.check_restart(): return 0 self.stage_files() # load dataset fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log) if 'columns' in self.predictors: labels = getHeader(self.io_dict["in"]["input_dataset_path"]) skiprows = 1 else: labels = None skiprows = None data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels) # the features are the predictors predictors = getIndependentVars(self.predictors, data, self.out_log, self.__class__.__name__) fu.log('Predictors: [%s]' % (getIndependentVarsList(self.predictors)), self.out_log, self.global_log) # Hopkins test H = hopkins(predictors) fu.log('Performing Hopkins test over dataset. H = %f' % H, self.out_log, self.global_log) # scale dataset if self.scale: fu.log('Scaling dataset', self.out_log, self.global_log) scaler = StandardScaler() predictors = scaler.fit_transform(predictors) # create a DBSCAN object with self.clusters clusters model = DBSCAN(eps=self.eps, min_samples=self.min_samples, metric=self.metric) # fit the data model.fit(predictors) # create a copy of data, so we can see the clusters next to the original data clusters = data.copy() # predict the cluster for each observation clusters['cluster'] = model.fit_predict(predictors) fu.log('Calculating results\n\nCLUSTERING TABLE\n\n%s\n' % clusters, self.out_log, self.global_log) # get number of clusters discarding outliers clstrs = set(clusters['cluster']) if -1 in clstrs: clstrs.remove(-1) fu.log('Total of clusters computed by DBSCAN = %d' % len(clstrs), self.out_log, self.global_log) outliers = clusters['cluster'].tolist().count(-1) op = (outliers / len(clusters['cluster'].tolist())) * 100 fu.log('Total of outliers = %d (%.2f%%)' % (outliers, op), self.out_log, self.global_log) # save results fu.log('Saving results to %s' % self.io_dict["out"]["output_results_path"], self.out_log, self.global_log) clusters.to_csv(self.io_dict["out"]["output_results_path"], index=False, header=True, float_format='%.3f') if self.io_dict["out"]["output_plot_path"] and self.plots: new_plots = [] i = 0 for plot in self.plots: if len(plot['features']) == 2 or len(plot['features']) == 3: new_plots.append(plot) i += 1 if i == 6: break plot = plotCluster(new_plots, clusters) fu.log('Saving output plot to %s' % self.io_dict["out"]["output_plot_path"], self.out_log, self.global_log) plot.savefig(self.io_dict["out"]["output_plot_path"], dpi=150) # Copy files to host self.copy_to_host() self.tmp_files.extend([ self.stage_io_dict.get("unique_dir") ]) self.remove_tmp_files() self.check_arguments(output_files_created=True, raise_exception=False) return 0
[docs]def dbscan(input_dataset_path: str, output_results_path: str, output_plot_path: str = None, properties: dict = None, **kwargs) -> int: """Execute the :class:`DBSCANClustering <clustering.dbscan.DBSCANClustering>` class and execute the :meth:`launch() <clustering.dbscan.DBSCANClustering.launch>` method.""" return DBSCANClustering(input_dataset_path=input_dataset_path, output_results_path=output_results_path, output_plot_path=output_plot_path, properties=properties, **kwargs).launch()
[docs]def main(): """Command line execution of this building block. Please check the command line documentation.""" parser = argparse.ArgumentParser(description="Wrapper of the scikit-learn DBSCAN method.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) parser.add_argument('--config', required=False, help='Configuration file') # Specific args of each building block required_args = parser.add_argument_group('required arguments') required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.') required_args.add_argument('--output_results_path', required=True, help='Path to the clustered dataset. Accepted formats: csv.') parser.add_argument('--output_plot_path', required=False, help='Path to the clustering plot. Accepted formats: png.') args = parser.parse_args() args.config = args.config or "{}" properties = settings.ConfReader(config=args.config).get_prop_dic() # Specific call of each building block dbscan(input_dataset_path=args.input_dataset_path, output_results_path=args.output_results_path, output_plot_path=args.output_plot_path, properties=properties)
if __name__ == '__main__': main()