Source code for classification.k_neighbors_coefficient

#!/usr/bin/env python3

"""Module containing the KNeighborsCoefficient class and the command line interface."""
import argparse
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from biobb_common.generic.biobb_object import BiobbObject
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, log_loss
from sklearn.neighbors import KNeighborsClassifier
from biobb_common.configuration import settings
from biobb_common.tools import file_utils as fu
from biobb_common.tools.file_utils import launchlogger
from biobb_ml.classification.common import check_input_path, check_output_path, getHeader, getIndependentVars, getIndependentVarsList, getTarget, getTargetValue, getWeight


[docs]class KNeighborsCoefficient(BiobbObject): """ | biobb_ml KNeighborsCoefficient | Wrapper of the scikit-learn KNeighborsClassifier method. | Trains and tests a given dataset and calculates the best K coefficient. Visit the `KNeighborsClassifier documentation page <https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html>`_ in the sklearn official website for further information. Args: input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/classification/dataset_k_neighbors_coefficient.csv>`_. Accepted formats: csv (edam:format_3752). output_results_path (str): Path to the accuracy values list. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/classification/ref_output_test_k_neighbors_coefficient.csv>`_. Accepted formats: csv (edam:format_3752). output_plot_path (str) (Optional): Path to the accuracy plot. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/classification/ref_output_plot_k_neighbors_coefficient.png>`_. Accepted formats: png (edam:format_3603). properties (dic - Python dictionary object containing the tool parameters, not input/output files): * **independent_vars** (*list*) - (None) Independent variables or columns from your dataset you want to train. * **target** (*string*) - (None) Dependent variable or column from your dataset you want to predict. * **metric** (*string*) - ("minkowski") The distance metric to use for the tree. Values: euclidean (Computes the Euclidean distance between two 1-D arrays), manhattan (Compute the Manhattan distance), chebyshev (Compute the Chebyshev distance), minkowski (Compute the Minkowski distance between two 1-D arrays), wminkowski (Compute the weighted Minkowski distance between two 1-D arrays), seuclidean (Return the standardized Euclidean distance between two 1-D arrays), mahalanobi (Compute the Mahalanobis distance between two 1-D arrays). * **max_neighbors** (*int*) - (6) [1~100|1] Maximum number of neighbors to use by default for kneighbors queries. * **random_state_train_test** (*int*) - (5) [1~1000|1] Controls the shuffling applied to the data before applying the split. * **test_size** (*float*) - (0.2) [0~1|0.05] Represents the proportion of the dataset to include in the test split. It should be between 0.0 and 1.0. * **scale** (*bool*) - (False) Whether or not to scale the input dataset. * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. Examples: This is a use example of how to use the building block from Python:: from biobb_ml.classification.k_neighbors_coefficient import k_neighbors_coefficient prop = { 'independent_vars': { 'columns': [ 'column1', 'column2', 'column3' ] }, 'target': { 'column': 'target' }, 'max_neighbors': 6, 'test_size': 0.2 } k_neighbors_coefficient(input_dataset_path='/path/to/myDataset.csv', output_results_path='/path/to/newTable.csv', output_plot_path='/path/to/newPlot.png', properties=prop) Info: * wrapped_software: * name: scikit-learn KNeighborsClassifier * version: >=0.24.2 * license: BSD 3-Clause * ontology: * name: EDAM * schema: http://edamontology.org/EDAM.owl """ def __init__(self, input_dataset_path, output_results_path, output_plot_path=None, properties=None, **kwargs) -> None: properties = properties or {} # Call parent class constructor super().__init__(properties) self.locals_var_dict = locals().copy() # Input/Output files self.io_dict = { "in": {"input_dataset_path": input_dataset_path}, "out": {"output_results_path": output_results_path, "output_plot_path": output_plot_path} } # Properties specific for BB self.independent_vars = properties.get('independent_vars', {}) self.target = properties.get('target', {}) self.weight = properties.get('weight', {}) self.metric = properties.get('metric', 'minkowski') self.max_neighbors = properties.get('max_neighbors', 6) self.random_state_train_test = properties.get('random_state_train_test', 5) self.test_size = properties.get('test_size', 0.2) self.scale = properties.get('scale', False) self.properties = properties # Check the properties self.check_properties(properties) self.check_arguments()
[docs] def check_data_params(self, out_log, err_log): """ Checks all the input/output paths and parameters """ self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", out_log, self.__class__.__name__) self.io_dict["out"]["output_results_path"] = check_output_path(self.io_dict["out"]["output_results_path"], "output_results_path", False, out_log, self.__class__.__name__) if self.io_dict["out"]["output_plot_path"]: self.io_dict["out"]["output_plot_path"] = check_output_path(self.io_dict["out"]["output_plot_path"], "output_plot_path", True, out_log, self.__class__.__name__)
[docs] @launchlogger def launch(self) -> int: """Execute the :class:`KNeighborsCoefficient <classification.k_neighbors_coefficient.KNeighborsCoefficient>` classification.k_neighbors_coefficient.KNeighborsCoefficient object.""" # check input/output paths and parameters self.check_data_params(self.out_log, self.err_log) # Setup Biobb if self.check_restart(): return 0 self.stage_files() # load dataset fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log) if 'columns' in self.independent_vars: labels = getHeader(self.io_dict["in"]["input_dataset_path"]) skiprows = 1 else: labels = None skiprows = None data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels) # declare inputs, targets and weights # the inputs are all the independent variables X = getIndependentVars(self.independent_vars, data, self.out_log, self.__class__.__name__) fu.log('Independent variables: [%s]' % (getIndependentVarsList(self.independent_vars)), self.out_log, self.global_log) # target y = getTarget(self.target, data, self.out_log, self.__class__.__name__) fu.log('Target: %s' % (getTargetValue(self.target)), self.out_log, self.global_log) # weights if self.weight: w = getWeight(self.weight, data, self.out_log, self.__class__.__name__) fu.log('Weight column provided', self.out_log, self.global_log) # train / test split fu.log('Creating train and test sets', self.out_log, self.global_log) arrays_sets = (X, y) # if user provide weights if self.weight: arrays_sets = arrays_sets + (w,) X_train, X_test, y_train, y_test, w_train, w_test = train_test_split(*arrays_sets, test_size=self.test_size, random_state=self.random_state_train_test) else: X_train, X_test, y_train, y_test = train_test_split(*arrays_sets, test_size=self.test_size, random_state=self.random_state_train_test) # scale dataset if self.scale: fu.log('Scaling dataset', self.out_log, self.global_log) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) # training and getting accuracy for each K fu.log('Training dataset applying k neighbors classification from 1 to %d n_neighbors' % self.max_neighbors, self.out_log, self.global_log) neighbors = np.arange(1, self.max_neighbors + 1) train_accuracy = np.empty(len(neighbors)) test_accuracy = np.empty(len(neighbors)) std_acc = np.zeros((self.max_neighbors)) # scale dataset if self.scale: X_test = scaler.fit_transform(X_test) for i, k in enumerate(neighbors): # Setup a knn classifier with k neighbors model = KNeighborsClassifier(n_neighbors=k) # Fit the model arrays_fit = (X_train, y_train) # if user provide weights if self.weight: arrays_fit = arrays_fit + (w_train,) model.fit(*arrays_fit) # Compute accuracy on the training set train_accuracy[i] = model.score(X_train, y_train) # Compute accuracy on the test set test_accuracy[i] = model.score(X_test, y_test) # deviation yhat_test = model.predict(X_test) std_acc[i - 1] = np.std(yhat_test == y_test) / np.sqrt(yhat_test.shape[0]) # best K / best accuracy best_k = test_accuracy.argmax() + 1 best_accuracy = test_accuracy.max() # accuracy table test_table_accuracy = pd.DataFrame(data={'K': np.arange(1, self.max_neighbors + 1), 'accuracy': test_accuracy}) fu.log('Calculating accuracy for each K\n\nACCURACY\n\n%s\n' % test_table_accuracy.to_string(index=False), self.out_log, self.global_log) # classification report cr_test = classification_report(y_test, model.predict(X_test)) # log loss yhat_prob = model.predict_proba(X_test) l_loss = log_loss(y_test, yhat_prob) fu.log('Calculating report for testing dataset and best K = %d | accuracy = %.3f\n\nCLASSIFICATION REPORT\n\n%s\nLog loss: %.3f\n' % (best_k, best_accuracy, cr_test, l_loss), self.out_log, self.global_log) fu.log('Saving results to %s' % self.io_dict["out"]["output_results_path"], self.out_log, self.global_log) test_table_accuracy.to_csv(self.io_dict["out"]["output_results_path"], index=False, header=True, float_format='%.3f') # accuracy plot if self.io_dict["out"]["output_plot_path"]: fu.log('Saving accuracy plot to %s' % self.io_dict["out"]["output_plot_path"], self.out_log, self.global_log) plt.title('k-NN Varying number of neighbors') plt.fill_between(range(1, self.max_neighbors + 1), test_accuracy - std_acc, test_accuracy + std_acc, alpha=0.10) plt.plot(neighbors, train_accuracy) plt.plot(neighbors, test_accuracy) plt.axvline(x=best_k, c='red') plt.legend(('Training Accuracy', 'Testing accuracy', 'Best K', '+/- 3xstd')) plt.xlabel('Number of neighbors') plt.ylabel('Accuracy') plt.savefig(self.io_dict["out"]["output_plot_path"], dpi=150) plt.tight_layout() # Copy files to host self.copy_to_host() self.tmp_files.extend([ self.stage_io_dict.get("unique_dir") ]) self.remove_tmp_files() self.check_arguments(output_files_created=True, raise_exception=False) return 0
[docs]def k_neighbors_coefficient(input_dataset_path: str, output_results_path: str, output_plot_path: str = None, properties: dict = None, **kwargs) -> int: """Execute the :class:`KNeighborsCoefficient <classification.k_neighbors_coefficient.KNeighborsCoefficient>` class and execute the :meth:`launch() <classification.k_neighbors_coefficient.KNeighborsCoefficient.launch>` method.""" return KNeighborsCoefficient(input_dataset_path=input_dataset_path, output_results_path=output_results_path, output_plot_path=output_plot_path, properties=properties, **kwargs).launch()
[docs]def main(): """Command line execution of this building block. Please check the command line documentation.""" parser = argparse.ArgumentParser(description="Wrapper of the scikit-learn KNeighborsClassifier method. ", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) parser.add_argument('--config', required=False, help='Configuration file') # Specific args of each building block required_args = parser.add_argument_group('required arguments') required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.') required_args.add_argument('--output_results_path', required=True, help='Path to the accuracy values list. Accepted formats: csv.') parser.add_argument('--output_plot_path', required=False, help='Path to the accuracy plot. Accepted formats: png.') args = parser.parse_args() args.config = args.config or "{}" properties = settings.ConfReader(config=args.config).get_prop_dic() # Specific call of each building block k_neighbors_coefficient(input_dataset_path=args.input_dataset_path, output_results_path=args.output_results_path, output_plot_path=args.output_plot_path, properties=properties)
if __name__ == '__main__': main()